skip to main content


Search for: All records

Creators/Authors contains: "Vienneau, Emelina"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Ruiter, Nicole V. ; Byram, Brett C. (Ed.)
  2. Deep neural networks have been shown to be effective adaptive beamformers for ultrasound imaging. However, when training with traditional L p norm loss functions, model selection is difficult because lower loss values are not always associated with higher image quality. This ultimately limits the maximum achievable image quality with this approach and raises concerns about the optimization objective. In an effort to align the optimization objective with the image quality metrics of interest, we implemented a novel ultrasound-specific loss function based on the spatial lag-one coherence and signal-to-noise ratio of the delayed channel data in the short-time Fourier domain. We employed the R-Adam optimizer with look ahead and cyclical learning rate to make the training more robust to initialization and local minima, leading to better model performance and more reliable convergence. With our custom loss function and optimization scheme, we achieved higher contrast-to-noise-ratio, higher speckle signal-to-noise-ratio, and more accurate contrast ratio reconstruction than with previous deep learning and delay-and-sum beamforming approaches. 
    more » « less